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A system for the automatic categorization of the results of

crystallization experiments generated by robotic screening is

presented. Images from robotically generated crystallization

screens are taken at preset time intervals and analyzed by the

computer program Crystal Experiment Evaluation Program

(CEEP). This program attempts to automatically categorize

the individual crystal experiments into a number of simple

classes ranging from clear drop to mountable crystal. The

algorithm ®rst selects features from the images via edge

detection and texture analysis. Classi®cation is achieved via a

self-organizing neural net generated from a set of hand-

classi®ed images used as a training set. New images are then

classi®ed according to this neural net. It is demonstrated that

incorporation of time-series information may enhance the

accuracy of classi®cation. Preliminary results from the

screening of the proteome of Thermotoga maritima are

presented showing the utility of the system.
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1. Introduction

The structural genomics initiative requires many tools to

automate procedures normally performed manually. Not least

of these processes is the detection of crystals within crystal-

lization trials. Modern robotic crystallization systems provide

the ability to screen 10±100 000 crystallization conditions per

day (Stevens, 2000). Added to this complexity, multiple images

of a crystallization trial may be taken at distinct time points,

amounting to a large number of images to evaluate. To deal

with the large number of images obtained, a quick computa-

tional method must be designed to ®lter the number of images

down to a manageable number for visual inspection whilst

maintaining a high success rate in identifying crystal-

containing drops. In the past, such methods have been applied

to crystal images; for example, Zuk & Ward (1991) used the

Hough transform (Hough, 1962) to identify crystal edges. Such

methods are still applicable today. In addition to crystal

identi®cation, it would be useful to score or annotate the

individual `non-crystallizing experiments' to provide valuable

information as to where to proceed in subsequent trials. Such

data would also provide a valuable metric for the design of

more ef®cient screens.

Image analysis is a vast computational ®eld whose algo-

rithms generally progress through various stages of segmen-

tation of an image into its `interesting features' followed by

classi®cation of these features into various types via pattern

matching or other algorithms. Besides the noise introduced by

digitizing an image, the problem with most of these techniques

is determining the correct relative weighting of each of the

extracted features to provide a de®nitive classi®cation.
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In general, humans have little dif®culty identifying crystals

or potential crystals. Although the exact mechanism whereby

any pattern is identi®ed by visual inspection remains to be

determined, it is simple to identify some key features that set

crystals apart from other objects. Straight edges, ¯at facets,

symmetry and objects that are closed are only a few of the

features that can be used to describe crystals. All of these

`features' may be violated, but are on the whole true. The key

is to identify the correct features to choose and then de®ne the

set of values of these features that are compatible with a

`crystal' or other pattern in a drop.

One such method for solving this

problem is the use of self-organizing

neural nets (Kohonen maps; Kohonen,

1982), which map a many-dimensional

feature vector onto a two-dimensional

map of arti®cial neurons. To implement

such a procedure for crystallization

experiments, a computer program,

Crystal Experiment Evaluation Program

(CEEP), is being developed. In CEEP, a

number of features are extracted from a

set of images with known classi®cation

and are then trained in an unsupervised

way such that like images with similar

features cluster together on a plane of

neurons. Once this planar map has been

trained, each node, consisting of one

neuron in the plane, may be assigned to

an individual classi®cation. Subsequent

annotation of unclassi®ed images is then

carried out by extracting features from

an image and then ®nding the node that

this image lands on in the classi®cation

map (Fig. 1).

Here, as part of the Joint Center for

Structural Genomics, we present a

preliminary analysis of crystallization

trials with CEEP from the crystallization results of expression

of the entire proteome of Thermotoga maritima, one of the

structural genomics initiatives funded by the NIH.

2. Methods

2.1. Crystallization

All proteins were crystallized using the sitting-drop vapor-

diffusion method at 293 K in custom 96-well plates (manu-

factured by Greiner Inc.) using sparse-matrix screens from

Hampton Research and Emerald Biostructures and a custom

robotics system. Typically, total drop size was 100 nl using

50 nl of protein and 50 nl precipitant, giving a total drop

diameter of approximately 0.5±1 mm.

2.2. Image acquisition

Images were taken between 2 and 4 h after set-up and then

at 7 and 28 d intervals with an Optimag 1700 (Veeco-Optimag

San Diego, CA, USA) imaging system equipped with a 5�
magni®cation objective ®xed-focus microscope. The system is

capable of taking 96 (one plate) 256 gray-level images

(Microsoft bitmap format) per 60 s (Fig. 2).

2.3. Preprocessing

The image of the shelf on which the crystallization drop sits

is automatically extracted by matching a 1.9 � 2.0 mm box

with the shelf edges (Fig. 1). This reduces the image to be

analyzed from 1024 � 1024 pixels (1 Mb) to 700 � 750 pixels

(0.5 Mb). As a ®rst step, the grayscale gradients on the image

Figure 1
Schematic of Crystal Experiment Evaluation Program. (a) Image is located after generation by
imager; (b) test for presence of drop ± if no drop classify as 0; (c) extract the drop from the
super¯uous material around it; (d) extract feature vector (pattern); (e) present the pattern to the
neural net and classify.

Figure 2
Typical bitmap generated by Optimag 1700 machine. (a) Unextracted full
1 Mb bitmap image (1024 � 1024 pixels = 1 Mb), (b) crystallization shelf
extracted using correlation with a 1.92 � 2.0 mm box (700 � 750 pixels =
0.5 Mb).



are calculated (described in detail below). Examination of

these gradients is performed to determine how well focused

the image is. A well focused image should have sharp edges

giving rise to large gradients, while a badly focused (blurred)

image has smoother edges and lower gradients. The amount of

blurring can be expressed as in terms of convolution of a sharp

in-focus image with a two-dimensional Gaussian function of a

given � value. The larger the � value, the more blurred the

imaged and the lower the gradients. Examination of a large

number of images has shown that � values less than 2.5 imply a

generally well focused image. Values between 2.5 and 4.0 are

noticeably out of focus. Values of � greater than 4.0 usually

mean that there is no drop on the shelf and greater than 5.0

usually imply serious condensation on the tape above the

drop, masking the drop and its contents.

The next step is to locate the crystallization drop on the

shelf. The edge-detection method of Canny (1986) as imple-

mented by Heath et al. (1998) is used to convert the eight bit

per pixel gray-level image to a one bit per pixel edge image.

Firstly, the image is convoluted with a Gaussian function, i.e.

blurred. This is necessary to produce smooth edges. A Gaus-

sian function with � = 2.0 was empirically found to produce

suf®cient blurring without being too computationally expen-

sive. Next, the gradients in both the x (GX) and y directions

(GY) are determined by substituting the gray-level at each

point in the image (GLx,y) with GLx + 1, y ÿ GLx ÿ 1, y for the

x-direction gradient and GLx, y + 1 ÿ GLx, y ÿ 1 for that in the y

direction. This is equivalent to convolution with the one-

dimensional ®lter [+1 0 ÿ1]. The magnitude of the gradient is

then calculated by combining the x and y one-dimensional

gradients such that Gx,y = (GX2
x;y + GY2

x;y)1/2. Non-maximal

suppression is then performed on the gradient image, which

traces along ridges of highest G, accepting as edges only

gradients higher than some user-de®ned threshold (Thigh)

(Fig. 3b). These edges are then extended along gradients

higher than a second user-de®ned threshold (Tlow). The values

of these thresholds are compromises that `interesting' edges,

e.g. drop edges and crystal edges, are found, but `unin-

teresting' edges, e.g. imperfections in the plastic of the shelf,

are ignored.

The drop edge is assumed to be the largest curved edge on

the image. Further restriction on the curvature of the edge, the

possible radius of the drop and `roundness' (deviation from a

perfect circle), again de®ned by the user, aid in weeding out

incorrect edges. For very weak drops, i.e. those with low-

contrast edges, more than one edge along the drop may be

found. These are all considered together in de®ning the drop

boundary. A perfect circle is then ®t to the edge to de®ne the

crystallization drop (Fig. 3).

2.4. Feature extraction

2.4.1. Edges. Edges within the drop

are identi®ed using the same procedure

as for ®nding the drop edges, except

that different threshold levels may be

selected (Fig. 4). Edges are then de®ned

in terms of their location, length

(number of connected pixels), `closed-

ness' (distance between the ®rst and

last pixels relative to the total length of

the edge) and compactness (ratio of the

maximum distance of any pixel from

the center to the average distance of all

pixels from the center). The area

enclosed by the edge is calculated by a
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Figure 3
Location of the drop boundary. (a) Original image, (b) after edge detection. The drop boundary has
been identi®ed as the largest curved edge in the image. (c) A box is ®tted about the drop for
extraction. The larger box around the edge of the image indicates the edges of the shelf on which the
drop sits. The walls around the shelf (outside the large box) are ignored in the image analysis.

Figure 4
Edge detection. (a) Original image (extracted drop from Fig. 2). (b) Image after gradient calculation (see x2.4.1). (c) All edges found after non-maximal
suppression. (d) Edges found above threshold Thigh and extended if above Tlow.
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formula derived from the relations between a circle's

circumference (c = 2�r) and its area (A = �r2) and takes into

account its nearness to a closed circle (closedness) and its

deviation from a circle (compactness),

area � length2 � �1ÿ closedness�2 � �1� closedness�2
� �2ÿ compactness�=4�:

Hence, for a perfect circle (closedness = 0, compactness = 1)

the area in pixels is c2/4�, as it should be, while for a straight

line (closedness = 1, compactness = 2) the area is zero.

Another potentially meaningful parameter is the length of

any straight edge, one of the characteristics of a crystal and the

parameter examined in detail by Zuk & Ward (1991). The

Hough transform (Hough, 1962) is used to locate straight lines

on the edge image. The Hough transform recasts pixel co-

ordinates in x, y space into polar coordinates � and � (Fig. 5),

� � x cos � � y sin �:

� is then calculated for � varying between 0 and 180� (after

which it repeats itself) in 1� steps. Pixels that are collinear all

intersect at the point (�, �) that de®nes the line. The length of

the line is the number of intersecting curves. While performing

the Hough transform on the entire image would be compu-

tationally expensive, if it is only performed for the pixels of the

individual edge groups, it becomes tractable, especially if sine

and cosine look-up tables are used. Since a single long straight

edge is more indicative of a nice crystal than a large number of

short edges, the square of the length of the line is used to

overweight long straight edges.

From the edge analysis six parameters are returned: the

number of individual edges found, the total area enclosed by

edges, the total straight-edge length of all edges, the maximum

area enclosed by a single edge, the maximum straight-edge

score from a single edge and the maximum score of a single

edge (straight-edge score � enclosed area) (Table 1).

2.4.2. Textures. Texture has long been used as a segmen-

tation device in the computational analysis of images

(Haralick et al., 1973). The basic theory behind this is the

construction of gray-level co-occurrence matrices. These are

de®ned as the probability that a pixel located at position (xij) is

the same as that located at distance d pixels away in a parti-

cular direction. Four directions, horizontal, vertical and the

two diagonals as well as an isotropic `all direction parameter'

can be calculated for a distance d pixels away. Although using

histograms to calculate the value of a function per pixel

greatly increases the speed of the algorithm (Unser, 1986), the

computational price grows rapidly as the window size

increases. In CEEP, ®ve main textures can be calculated,

entropy, energy, homogeneity, root-mean-squared deviation

(r.m.s.d.) and contrast, with up to four different directions and

ten different distances d (Table 1; Fig. 6). Global parameters

can be derived from these textures, extracted as the mean (or

r.m.s.d.) value of the transformed image. Otherwise, the

Figure 5
Simple Hough transforms. Above, x, y image space; below, �, � parameter space. (a) A single point. (b) Two points; the intersection in the Hough
transform de®nes the line between the points. (c) Three points. Three intersections de®ne the three lines between the points. (d) A triangle. The lines in
the Hough transform cluster at three points that de®ne the three lines forming the sides of the triangle.

Table 1
Currently used features.

Summary of commonly used features in the feature vector; features of type
edge are always calculated, whilst those of gray-level co-occurrence may be
calculated in ®ve individual directions with ten possible window sizes.

Feature Type Options

No. of groups Edge Ð
Total area of groups Edge Ð
Summed edge length Edge Ð
Largest group area Edge Ð
Largest edge length Edge Ð
Largest group area �

largest group length
Edge Ð

Entropy Gray-level
co-occurrence

Isotropic, anisotropic four
directions, ten window sizes

Homogeneity Gray-level
co-occurrence

Isotropic, anisotropic four
directions, ten window sizes

Energy Gray-level
co-occurrence

Isotropic, anisotropic four
directions, ten window sizes

Contrast Gray-level
co-occurrence

Isotropic, anisotropic four
directions, ten window sizes

Standard deviation Gray-level
co-occurrence

Isotropic, anisotropic four
directions, ten window sizes



transformed images may be segmented and parameters such

as those described for edge detection extracted (Table 1;

Fig. 6).

2.5. Classification schemes

For training of the neural net to proceed, a hand classi®-

cation of a visually annotated set of images must be performed

which samples as much of `image space' as possible. In its

®rst implementation, CEEP provides a simple classi®cation

scheme denoted by six numbers ranging from 0 (experimental

mistake) to 5 (a mountable crystal) (Fig. 7).

2.6. Neural nets in CEEP

2.6.1. Training of neural net. Kohonen or self-organizing

neural nets have been used extensively in the analysis

of multidimensional spaces (Kohonen, 1982). They are

unsupervised learning systems capable of reducing multi-

dimensional data to two dimensions while preserving the

topology between vectors. In CEEP, a 50 � 50 node neural

net, each node n = (x, y), is trained with an initial set of m

input patterns pmi, (where m is the pattern number, i is the

number of features used) forming the feature vector. Thus

each node n has a vector of weights wxy associated with it, the

®nal net being a three-dimensional matrix of weights wxyi. The

net is initiated with random weights between 0.0 and the

maximum for the feature in the training set and the initial

neighborhood set to 25 nodes, or half the dimension of the net.

For each of 10 000 iterations each feature vector is presented

to the neural net and the winning node (Wn) determined. Wn is

de®ned as the node with the lowest Euclidean distance

(Kohonen, 1982) between the pattern and the vector repre-

senting the weights of the neural net.
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dn �
P

j

�wxyj ÿ pmj�2
" #1=2

;

Wn � min jdnj:
Thus dn is the distance between node n and pattern m.

The net is then trained around the neighbourhood of the

winning node Wn to respond to this pattern using a simple

top-hat function such that the weights for node n in the

neighbourhood of Wn are adjusted to

wxyj � wxyj � L�t� � �pmj ÿ wxyj�;
where wxyj is the jth weight for node xy, L(t) is the learning

rate for iteration t and pmj is the value for the jth component of

pattern m.

The learning rate L(t) and neighborhood N(t) of the net is

decreased according to

L�t� � Linitial ÿ t=T � �Linitial ÿ Lfinal�;
where Linitial and L®nal are the starting and ®nal learning rates,

T is the ®nal number of iterations and

N�t� � N�t� ÿ 1 if mod�t; int�T=Ninitial�� � 0;

where Ninitial is the starting neighborhood size, such that the

®nal learning rate (L®nal) and neighborhood (N®nal) are 0.01

and 0, respectively.

Using this strategy, the net slowly converges by clustering

like patterns together (Fig. 8). Finally, the reverse procedure is

carried out and each node is presented to each of the feature

vectors and the lowest Euclidean distance calculated. Using

this method, each node is assigned the annotation value

(between 1 and 5) of the best matching pattern (Fig. 8) and the

trained neural net and classi®cation map are then output to be

used in future classi®cations. Depending on the number of

patterns, the size of the net and the number of features in the

feature vector, training can take several hours to calculate the

net and classi®cation map required for classi®cation.

Currently, the training set consists of 620 hand-classi®ed

images with approximately the same numbers of images

contributing to each class from 1 to 5.

2.6.2. Classification. Classi®cation of a new image proceeds

by extracting the appropriate features from the image and

Figure 6
Texture transformation on an image. Images were generated from a gray-level co-occurance matrix with isotropic direction and a pixel size d of six pixels;
pij is the probability that a pixel at position ij will have the same value as one a distance d pixels away. (a) Original untransformed image; (b) entropy,
ÿPi

P
j pij log pij�xij ÿ xmean�2=N; (c) homogeneity,

P
i

P
j pij=�1� jiÿ jj�; (d) energy,

P
i

P
j p2

ij; (e) contrast,
P

i

P
j jiÿ jjpij; (f) root-mean-square

deviation (r.m.s.d),
P

i

P
j.
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®nding the winning node, de®ned as the lowest Euclidian

distance between node and feature vector, from the pre-

trained neural net (Figs. 1 and 8; x2.6.1). This node then maps

directly to the stored class map. Annotations are then output

along with a con®dence of correctness as de®ned by the

percentage of images of one type landing on that node and the

values of all of the parameters. All parameters and annota-

tions are stored in a MySQL database administered by Perl

scripts for easy retrieval and analysis of the data.

2.6.3. Confidence of correctness. A simple statistic is used

to estimate how likely a classi®cation is to be correct. The class

map has 2500 nodes and each of these contains information of

how many images of a particular type land on them from the

training set. The con®dence of correctness is thus de®ned as

the percentage of images of a particular type that land on that

particular node. Thus, if an image lands on the node where all

clear drop images lie, then it is highly likely that this image is

also a clear drop. Those nodes without any training images

landing on them are still classi®ed, but are given an unde®ned

con®dence of correctness.

2.6.4. Updating the training set. Even with the 6±11 para-

meters of image space currently de®ned, the space of the

feature vector is very large. Classi®cation should become more

accurate as this feature vector space is `¯eshed out' with

adequate sampling of the space. Selection for further inclusion

into the training set is carried out semi-automatically by

extracting all images that have an `unde®ned' con®dence of

correctness, meaning they do not land on a node occupied by

images in the training set. These images are inspected visually

and classi®ed for future inclusion into training sets.

2.7. Time series of images

It is apparent that crystallogenesis is a growth phenomena.

Crystals appear (and sometimes disappear) and grow over

time. Other phenomena found in drops tend to be unchanging

with time; precipitants tend to develop over minutes rather

than days. Thus, by taking an image of a drop as a `time zero'

soon after the drop is set up and examining the changes in the

drop over time, useful information may be derived. A simple

application of this is to look at the change in the node that an

image lands on, For example, the image from Fig. 9(a) lands on

node (8, 18) of the neural net and is classi®ed `incorrectly' as a

3 (inhomogeneous precipitant). After the drop is analyzed a

week later, the image (Fig. 9b) lands on node (27, 21) and is

correctly classi®ed as a 5 (mountable crystal). The important

understanding here is that the net recognizes that the image

has changed, indicating that what is in the drop may be

interesting.
2.7.1. Image registration. To further analyze a time series of

images, the images must be brought into register with one

another to gain maximum signal to noise; this can be

performed by maximizing the correlation between the two

images. The calculation can be performed in real or reciprocal

space. In real space, rather than maximizing a pixel-by-pixel

correlation, which would be computationally too expensive,

the sums of the grayscale values along each pixel row and

column are calculated. The overlap of these is then maximized

by two one-dimensional correlation calculations. The

reciprocal-space evaluation involves computing the Fourier

transformation of both images, followed by a calculation of a

correlation via a fast Fourier transform. The registered images

may then be scaled relative to each

other and subtracted. Experiments have

been conducted using a global scaling

algorithm using only one scale or locally

scaling using a scale derived from a

window around each pixel. The local

scaling algorithm calculates scales over

windows of 15±30 pixels and is more

computationally expensive, but gener-

ally leads to smoother and better

resultant images (Fig. 9).

Fig. 9 shows an image containing

precipitant (Fig. 9a) and precipitant plus

crystals (Fig. 9b). Upon application of

this method the precipitant is mostly

removed (Fig. 9c). Of course, this algo-

rithm will only enhance the signal in

crystal detection and classi®cation of

precipitants must be performed on

individual images or as a consensus

score from a group of images.

3. Results and discussion

As part of the Joint Center for Struc-

tural Genomics (Lesley et al., 2002), the

Figure 7
The simple classi®cation scheme. 0, experimental mistake, unable to ®nd drop; 1, clear drop; 2,
homogenous precipitant; 3, inhomogenous precipitant, jelly®sh-like structures; 4, microcrystals or
any crystals deemed as too small/bad to mount; 5, mountable (good crystals).



entire proteome of Thermotoga maritima has been processed

for expression and crystallization. Those proteins that

expressed in milligram quantities were robotically set up in

sitting-drop vapor-diffusion crystallization trials at 293 K with

480 conditions and a total drop volume of 100 nl. Images were

taken between 2 and 4 h after setup and at 7 and 28 d intervals.

Currently, 556 518 images have been processed with CEEP

using the edge-detection parameters, taking approximately 1 s

per image on a single-processor (R12000) Silicon Graphics

Octane computer. A limited subset, mostly picked crystals,

was also subjected to edge- and texture-analysis parameters

with a distance of one pixel and ®ve isotropic texture para-

meters taking approximately 10 s. Fig. 10 illustrates the

partition of all of the images into the various categories: 39.4%

are classi®ed as clear drops, 21.7% as homogeneous precipi-

tants and 13.1% as inhomogeneous precipitants. Throughout

the process between 15 and 25% of images were identi®ed as

`interesting' (designated 4 or 5).

In addition to this, the images were hand analyzed looking

only for crystals (categories 4 and 5). Of 920 images identi®ed

as possible crystals by humans, 72% were accurately identi®ed

as crystals using the six edge-detection parameters described

(Table 2), whilst 75% were classi®ed as crystals using the 11

parameters of the edge plus texture map. Of the other cate-

gories (1±3), from a limited set of 300 of each category of

classi®ed images, clear drops were positively identi®ed 82% of

the time, homogeneous precipitants 55% of the time and

inhomogeneous precipitate 47% of the time using only the six

edge-parameter neural net.

3.1. Edge detection

In general, problems are posed by large gradients on an

image that do not arise from crystals (Fig. 11). Because the

crystallization drops bead up and form a lens-like structure,

the outside edges tend to darken (see Fig. 2b). Foreign bodies

(®bers, dust, etc.) in the drops also tend to be ¯agged as

crystals by the program. Protein `skins' which buckle as the

drop volume decreases also give rise to lines that look much

like the edges of crystals. Inhomogeneous precipitates,

generally formed by precipitation of protein immediately

upon mixing with the reservoir solution, lead to sharp regular

boundaries usually interpreted as crystal edges. Scratches

introduced on the plastic shelf where the drop sits, either

during manufacture or handling (e.g. pipetting), are usually

¯agged as possible crystals. On the other hand, very thin plate-

like crystals are generally missing one or more edges, giving

them low scores. Drops with extremely low contrast edges, e.g.
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Figure 9
An example of image registration. (a) Image taken at time 0 (2±4 h after setup) clearly showing precipitant. (b) Drop after one week; four crystals are
apparent in the precipitant. (c) Images (a) and (b) registered, maximizing correlation coef®cient to 75%, subtracted and scaled using a local scaling
algorithm with a box size of 15 pixels. (d) Edges detected using image (b). (e) Edges detected using image (c), showing the increase in the signal to noise
after image subtraction takes place.

Figure 8
(a) Images of neural net taken at various stages of training, starting at the
0th iteration with random weights and a neighborhood of 25 to the
10 000th iteration, a trained net with a neighborhood of 0. (b) Grayscale
showing the classi®cation number corresponding to the gray level of the
node.
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those employing organic solvents, are sometimes not found at

all (Fig. 11).

In general, the thresholds have been set low enough that

when the program errs, it errs on the side of caution by ¯ag-

ging things that might be crystals (to be checked by visual

inspection later) rather than missing evidence of a crystal

altogether. Therefore, the program intentionally produces

more false positives than false negatives.

3.2. Textures

As would be expected, the evaluation of global parameters

on drops can be heavily in¯uenced by the strongest features in

the image, notably the drop edges. However, if the training set

of images from a wide range of

different crystallization conditions is

sampled well enough, this effect can be

overcome. The detection process using

texture only slightly enhanced crystal

detection but greatly increased the

computational expense. This enhance-

ment probably arose from the detec-

tion of correlations in intensity arising

from crystal edges. It does seem likely

that the texture functions will be more

effective in the identi®cation and

classi®cation of precipitants and their

differentiation from crystals.

3.3. Classification

With only six classi®cation cate-

gories, the scheme grossly over-

simpli®es the vast number of different

drop conditions produced by crystal-

lization screens. Many categories have

been omitted for simplicity, such as the

overlapping categories that occur in

many drops, i.e. precipitant plus

crystals. In these cases, correct classi-

®cation is compromised and false

negatives can result if one class is

dominant. Further, many commonly

occurring classes such as protein skins

are omitted altogether. Fortunately,

such classes are often marked as false

Figure 10
Histogram of the classi®cation of the 565 200 images into different
categories. The shading of histogram corresponds to the shading in Fig. 8,
with the exception of class 0 (experimental mistakes) which are shaded in
red.

Table 2
Results on images classi®ed by eye as mountable crystals.

Summary of results calculated on identi®ed crystals with two self-organizing neural nets calculated with six edge parameters and 11 edge plus texture parameters
(isotropic directions pixel window size of 1). Class 0 is not classi®ed by neural net but by the drop-®nding procedure (see x2.2). A false negative is de®ned as a
crystal image which is scored below category 4.

Neural net/computed
classi®cation

0 (%)
(No.)

1 (%)
(No.)

2 (%)
(No.)

3 (%)
(No.)

4 (%)
(No.)

5 (%)
(No.)

Crystal 4 + 5
(%) (No.)

False negative
(%) (No.)

Edge map, six parameters 0 (0) 3.36 (31) 8.4 (77) 15.2 (140) 37.5 (345) 35.5 (327) 73.0 (672) 26.9 (248)
Edge + text map,

11 parameters
0 (0) 5.5 (51) 3.2 (30) 15 (138) 32.5 (299) 43.2 (397) 75.6 (696) 23.8 (219)

Figure 11
Problem images. (a) Gradient-edge effects producing edges near the boundary of the drop; (b) drop
shadows; (c) artifacts in the drops; (d) protein skins mimicking crystals; (e) very faint drop boundaries
from organic precipitants; (f) inhomogeneous precipitants often look interesting to the net and
generate a lot of false positives.



positives and as such can be further eliminated by visual

inspection.

4. Further directions/approaches

Mapping image space more completely with a better-sampled

and more complete training set should provide an improved

classi®cation. Time-series information may also increase the

accuracy of crystal detection by removing unchanging

phenomena in the drop and increasing the signal to noise. In

addition, other parameters such as those provided by multi-

scale techniques for image analysis are under investigation to

complement or replace those already available.

5. Summary

This method of image analysis provides a quick and conve-

nient approach to ®ltering and annotating images taken in a

robotic crystallization environment. False-positive generation

is currently a major problem, with approximately 25% of

images being marked as crystalline and needing user attention.

The low correct scores for both precipitant categories

primarily arise from their elevation to crystalline categories.

Markedly more troubling for the crystallographer is any

degree of false negatives (missed crystals) evaluated by the

program. This will be a recurrent problem in automated

crystal detection, primarily owing to the low signal to noise in

many of the images and the inability of many of the features to

accurately describe what is a crystal. However, the current

implementation of CEEP is fast, accurate and allows the

classi®cation of up to 90 000 images per day using only a

moderately powerful CPU.

Although the analysis of crystallization images by computer

is by no means a substitute for a trained human, the structural

genomics age approaches and the ability to process whole

genomes for analysis for X-ray crystallography by robotic

means must be complemented by the computational means to

track and evaluate all of the processes downstream of this.

6. Availability

The CEEP package is written in C and has currently been

tested on Silicon Graphics Octane computers, Linux running

on a PC and Linux running on Dec ALPHA processors. It is

available upon request from the author for non-commercial

use.
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